Ноутбуки

Параболическая орбита. "фотометрия исз"

Со времен запуска первого Искусственного Спутника Земли (ИСЗ) в 1957 году жизнь человечества сильно изменилась. Многим достижениям технического прогресса (международная спутниковая связь, точный прогноз погоды, интернет) человечество обязано именно спутникам, летающим по орбитам в околоземном пространстве. Сегодня таких спутников, выполняющих совершенно разные задачи, десятки тысяч. Их размеры: от огромных (около 100 метров) до совсем маленьких (буквально в несколько сантиметров). У каждого из них своя задача и своя орбита. По каким орбитам летают спутники? Какие бывают орбиты и что это вообще такое?

Немного истории

Люди давно заметили, что огромные космические тела, будь то кометы, планеты или звезды, движутся по небу, сохраняя некую периодичность. Особенно любознательные записывали свои наблюдения, что давало каждому новому поколению все больше и больше знаний о движении в космическом пространстве.

Так, например, исследуя труды датского астронома Тихо Браге, Иоганн Кеплер, немецкий астроном XVI века, установил, что все космические тела движутся по определенным законам. В частности Кеплер предположил, что Марс (именно за это планетой долгое время наблюдал Браге) движется вокруг Солнца вовсе не по кругу. В своем труде «Новая астрономия, изложенная в исследованиях о движении звезды Марс» Кеплер показал, что Марс вращается вокруг Солнца по эллипсу. Позднее Кеплер сформулировал еще несколько выводов, которые объединил в три определения. Сегодня эти определения (теперь мы называем их Законами) известны нам под его именем.

Не будем углубляться в историю во всех подробностях. Лучше давайте рассмотрим, чего добилось и какие выводы сделало человечество, используя законы Кеплера. Начнем с определения орбиты.

Что такое орбита спутника

Орбитой спутника, собственно, называется траектория его движения. Движение по орбите происходит по инерции (с выключенными двигателями), и при этом на спутник (это может быть искусственный спутник или планета) оказывает влияние только гравитация (в основном, конечно, Земля). Орбиты спутников имеют эллиптическую форму и движутся по воображаемой плоскости, проходящей через центр Земли. Плоскость эта, а значит и орбита, не симметричная, а как бы вытянутая, то есть не является постоянной, она все время изменяется, то увеличиваясь, то уменьшаясь по ходу траектории. Выражаясь научным языком, наивысшая точка орбиты (максимальное удаление от Земли) называется апогеем, а наинизшая (минимальное удаление от Земли) точка – перигеем. Находятся они, соответственно в южном и северном полушариях Земли.

Согласно Второму Закону Кеплера планета (в нашем случае спутник), движущаяся в плоскости проходит (описывает) за равные промежутки времени равные площади. Из этого можно сделать вывод, что спутники движутся неравномерно. Чем ближе спутник к Земле (перигей), тем выше его линейная скорость, и чем дальше он от Земли (апогей), тем его скорость ниже. Это явление позволило ученым предположить, а потом и рассчитать различные спутниковые орбиты , оптимальные для конкретного целевого назначения.

Какие бывают орбиты

В зависимости от заданной начальной скорости, выведенный в космос спутник занимает определенную орбиту (или сначала одну, а потом другую). Свойства орбиты спутника позволяют оптимизировать приемо-передающее оборудование для оптимальной реализации поставленных задач. Различаются орбиты по наклонению, по величине большой полуоси (или высоте над поверхностью Земли) и по скорости обращения спутника вокруг Земли. Рассмотрим виды спутниковых орбит подробнее.

Орбиты с заданным наклонением

Эта классификация показывает, как орбиты различаются по углу наклонения. Чем больше угол наклонения орбиты, тем более заметен будет спутник в северных широтах. А чем спутник выше, тем шире становиться область видимости. Существуют экваториальные (орбита проходит вдоль экватора Земли), полярные (орбита проходит перпендикулярно экватору) и солнечно-синхронные орбиты. Последняя орбита чаще всего используется для размещения спутников, предназначенных для фото и видео съемки поверхности Земли.

Разновысотные орбиты (величина большой полуоси)

В зависимости от высоты орбиты, выведенный спутник, соответственно, называется низкоорбитальным или среднеорбитальным.

Низкоорбитальные спутники летают над поверхностью Земли на высоте от 160 километров до 2000 километров. Их наиболее распространенное название в научной литературе: LEO (от англ. Low Earth Orbit – малая земная орбита).

Используются такие низкоорбитальные спутники чаще всего для обеспечения персональной радиотелефонной связи. Объясняется это бесперебойностью контакта наземных терминалов с ретрансляторами спутников, а также мощностью приемо-передающего сигнала. Данный аспект, однако, был использован в сфере массовых телекоммуникаций сравнительно недавно. Так, в странах с развитой инфраструктурой, доля услуг, предоставляемых именно низкоорбитальными спутниками, составляет всего около 35%. Основную долю составляют спутники, летающие на геостационарной орбите.

Среднеорбитальными спутниками называют спутники, летающие над поверхностью Земли на высоте от 2000 километров до 35786 километров. Называются они, соответственно, MEO (от англ. "Medium Earth Orbit – средняя земная орбита).

Именно эти орбитальные высоты используются системами глобальной навигации (GPS, ГЛОНАСС).Это вполне справедливо, так как заданная высота среднеорбитальных спутников позволяет максимально точно обмениваться данными с приемниками (навигаторами).

Геостационарная орбита

Данная классификация показывает скорость обращения спутника вокруг Земли, находящегося на определенной орбите. Скорость обращения такого спутника составляет 23часа 56минут и 4,09секунды. Несложно понять, что этот показатель равен земным суткам. Следовательно, спутник на такой орбите как бы «висит» в небе на одном месте.

Геостационарная орбита располагается от поверхности Земли на расстоянии 35786 километров. Орбита проходит в экваториальной плоскости Земли. Её радиус равен 42164 километрам. Это приблизительно в 6 раз больше, чем радиус нашей планеты (составляет 6378 километров). Небесные координаты такого спутника на геостационарной орбите остаются постоянными. Это дает возможность использовать их для работы спутникового телевидения. Сигнал, приходящий от таких спутников, четкий и бесперебойный.

Сохранение постоянной точки позиционирования («зависание» на одном месте) не является абсолютным, так как на спутник постоянно оказывается влияние ближайшего естественного спутника Земли – Луны. Луна вызывает гравитационные возмущения на орбите спутника, притягивая его к себе. Корректировка позиции спутника проводится с помощью двигателей, которыми он оснащен.

«Пояс Кларка»

Впервые в истории рассчитал геостационарную орбиту английский инженер Артур Кларк. Случилось это в, уже далеком, 1945 году. Кларк предложил использовать эту орбиту для спутников связи. Эта идея, на удивление самого Кларка, была реализована, и очень скоро! Практически все глобальные системы коммуникации обязаны своим существованием именно этому человеку. Если смотреть в более широком смысле, то все люди, кто сегодня пользуется Интернетом, находятся в неоценимом долгу перед Артуром Кларком. В Англии и большинстве других стран, особенно европейских, геостационарную орбиту называют «Поясом Кларка».

Вывод спутников на орбиту

Процесс отправки спутника и его вывод на заданную высоту (орбиту) представляет собой совокупность научно-практических действий, основанных на четких математических и физических расчетах. Непосредственная доставка спутника осуществляется многоступенчатой ракетой, с использованием промежуточной орбиты.

Для чего это нужно

Рассмотрение таких сложных, но интересных тем, как орбитальные спутники, определение и классификация орбит и другие, совершенно логично вызывает ряд вопросов. Какая от этого польза? Для чего всё это нужно знать?

Как уже говорилось в начале статьи, с появлением орбитальных искусственных спутников Земли и освоением человеком околоземной орбиты, многое в жизни современного человечества изменилось. Например, значительно снизилась средняя стоимость международных телефонных разговоров. Появилась возможность использования ресурсов глобальной системы спутниковой навигации. Точный прогноз погоды, расчет климатических изменений в определенных регионах планеты, прогнозирование гео-климатических изменений в планетарном масштабе, обследование морского дна и залежей полезных ископаемых, доступ во всемирную сеть Интернет в любой точке планеты, изучение космоса, в конце концов, - всё это стало возможным благодаря орбитальным спутникам.

К сожалению, сегодня околоземная орбита перенасыщена различным «космическим мусором». Подсчитано, что более 1 100 летающих объектов диаметром более полуметра находятся в непосредственной близости от геостационарной орбиты Земли, на которой, как правило, размещается коммуникационное оборудование. Однако, всего лишь 300 из этих объектов - это действующие спутники. Среди опасных объектов, которые за ненадобностью бросили в космосе на разных высотах,- 32 давно выведенных из строя ядерных реактора. Все это говорит о неблагодарности отдельных «пользователей» орбиты к тем, кто когда-то подарил нам бесценные знания о Законах движения тел во вселенной.

Геостационарный искусственный спутник Земли представляет собой аппарат, которой двигается вокруг планеты в восточном направлении, по круговой экваториальной орбите с периодом обращения, равным периоду собственного вращения Земли.

Если смотреть на такой спутник с Земли, то наблюдателю покажется, что он недвижется, а стоит на одном месте. Вахта его орбиты равна 36 000 километров от поверхности планеты. Именно с такой высоты видна почти половина поверхности Земли. Поэтому, расположив равномерно вдоль экваториальной орбиты на равном расстоянии (через 120°) три одинаковых спутника, можно обеспечить непрерывное наблюдение за поверхностью планеты в диапазоне широт, равном плюс-минус 70°, и глобальную круглосуточную радио- и телевизионную связь.

При использовании данных спутников в системе «Орбита» повышается качество вещания. В связи с тем, что орбита спутника строго согласована с периодом вращения Земли, такой аппарат получил название синхронного, а его орбита — стационарной.

Для того чтобы было бол ее ясным положение спутника на орбите, ниже дается описание процесса вывода его на геостационарную орбиту.

Для начала стоит отметить, что такой спутник лучше всего запускать с космодрома, который находится на экваторе, в восточном направлении. Это следует делать потому, что появляется возможность использовать начальную скорость, обусловленную вращением Земли. В случае, когда космодром расположен не на экваторе, приходится использовать довольно сложную двух- или трехимпульсную схему выведения.

В первую очередь спутник вместе с последней ступенью ракеты-носителя выводится на круговую промежуточную орбиту на высоте около 200 километров и оставляется на ней до возникновения благоприятного момента для последующего маневра. В первый раз двигательную установку включают для того, чтобы перевести спутник с орбиты ожидания на переходную, которая своим апогеем соприкасается со стационарной, а перигеем — с исходной орбитой. Причем включение двигателей аппарата должно совпасть со временем, когда спутник пересекает экватор. Продолжительность полета должна быть такой, за которую спутник выйдет в заданную точку стационарной орбиты. Как только аппарат достигнет апогея, опять включаются двигатели для поворота плоскости переходной орбиты и поднятия перигея до высоты стационарной орбиты. Затем двигатели выключаются, и спутник отделяется от ракеты-носителя.

Если космодром находится на пороге более 50°, то при выводе спутника на орбиту, кроме двух рассмотренных выше включений двигателей, должно выполняться еще одно. Как и в первом случае, спутник запускается на заданную орбиту, затем переводится на переходную, но при этом высота апогея должна быть значительно больший и превышать высоту стационарной орбиты. При достижении аппаратом апогея включаются двигатели, и спутник переводится на вторую переходную орбиту, которая расположена в плоскости экватора и касается своим перигеем стационарной орбиты. На второй переходной орбите, в перигее, в третий раз включаются двигатели. Это делается для того, чтобы уменьшить скорость спутника и стабилизировать его на этой орбите.

В декабре 1975 года был создан новый спутник связи — «Радуга», которому был присвоен международный регистрационный индекс «Стационар-1». Он используется для тех же целей, что и «Малния», но находится на стационарной орбите. А что собой представляет стационарная орбита? «Радуга» летает по круговой орбите в плоскости экватора на высоте 36 000 километров. Его угловая скорость точно такая же, как скорость вращения Земли. Получается, что он постоянно висит над одной и той же точкой планеты. Поскольку имеется такой высоко расположенный ретранслятор, можно сэкономить на постройке наземных радио- и телестанций, то есть оснащать их небольшими по размеру приемными антеннами.

В 1978 году появился «Стационар-2», а еще через год — спутник «Экран» (международный регистрационный индекс «Стационар-Т»). Данный спутник имел особую функцию: при его использовании облегчился прием передач Центрального телевидения на упрошенные наземные приемные установки.

Постоянное местонахождение спутника «Экран» — точка, соответствующая 99° восточной долготы, над Индийским океаном. Спутник обеспечивает ретрансляцию как черно-белых, так и цветных телевизионных программ на территорию площадью около 9 миллионов квадратных километров. Для приема сигналов с «Экрана» применяются наземные установки двух типов. При использовании установки первого типа ведется профессиональный прием программ с последующей подачей их на телецентры. Не, в свою очередь, передают сигнал непосредственно на телеприемники телезрителей, находящиеся в радиусе 10-20 километров. Приемные установки могут быть смонтированы как на городском, так и на сельском узле связи.

Наземная приемная установка второго типа предназначена для применения совместно с маломощными телевизионными ретрансляторами, обслуживающими телевизионные приемники, находящиеся в радиусе 3-5 километров, а также для непосредственного коллективного приема телепрограмм с подачей их в домовую распределительную сеть. Установки второго типа оснащены антеннами уменьшенного размера и более простым приемным оборудованием.

Спутниковой связью пользуются не только при приеме телевизионных передач или для обеспечения телефонного разговора с далеко находящимся абонентом, но и для передачи всевозможной служебной информации. Сейчас в напей стране действует около сотни наземных станций «Орбита», которые через спутники-ретрансляторы могут связать Саратов с Иркутском, Тбилиси с Якутском и т. д.

Имеется еще одна, но очень важная функция у искусственных спутников Земли. В воздухе, на море и на супе порой возникают аварийные ситуации, и люди нередко оказываются в сложной обстановке. Практически всегда при кораблекрушениях, авариях самолетов и прочих неприятностях требуется найти пострадавших и оказать им помощь. В настоящее время поиск и спасение терпящих бедствие судов и самолетов осуществляются при помощи спутников.

Тридцать первого марта 1978 года на орбиту был выведен искусственный спутник Земли типа «КЬамос-1000». Он предназначался для определения местонахождения судов транспортного и рыбопромыслового флотов. В 1982 году 30 июня был запушен «КЬсмос-1383». На нем была установлена аппаратура для определения координат морских и воздушных судов, терпящих бедствие. Через небольшой промежуток времени вывели на орбиту «КЬсмос-1447» и «КЬсмос-1574».

Принцип работы космической поисково-спасательной системы следующий. Пролетая на высоте 800-1000 километров, спутник принимает сигналы, поступающие от аварийных радиобуев с площади круга до 27 000 квадратных километров. Собрав информацию, спутник передает ее в наземные пункты. В этих пунктах информация перерабатывается, анализируется, вычисляются координаты аварийных радиобуев, и все данные передаются в ближайший к месту аварии поисково-спасательный центр. А остальное — дело техники, потому что спутник-спасатель определяет место нахождения радиобуя с точностью в 2-3 километра за 8-12 минут.

В течение нескольких лет с большим успехом работает внутригосударственная система спутниковой связи, называемая «Орбита». В настоящее время она является неотъемлемой частью Единой автоматизированной системы связи страны. Кроме этого, уже функционирует непосредственное телевизионное вешание (НТВ). Прием сигнала со спутника идет на индивидуальную антенну и передается на экран телевизора. Преимущества НТВ совершенно очевидны: происходит охват больших, чем раньше, территорий, передача телевизионного и радиосигнала в самые отдаленные уголки планеты. Причем данная система не нуждается при последующей ретрансляции телевизионных изображений в сложной наземной технике, то есть для прямого приема телепрограмм из космоса достаточно провести лишь небольшую модификацию телевизионных приемников.

Что собой представляет геостационарная орбита? Это круговое поле, которое расположилось над экватором Земли, по нему искусственный спутник обращается с угловой скоростью вращения планеты вокруг оси. Он не изменяет свое направление в горизонтальной системе координат, а неподвижно висит в небе. Геостационарная орбита Земли (ГСО)представляет собой разновидность геосинхронного поля и применяется для размещения коммуникационных, телетрансляционных и других спутников.

Идея использования искусственных аппаратов

Само понятие геостационарной орбиты инициировано русским изобретателем К. Э. Циолковским. В своих работах он предлагал заселить космос с помощью орбитальных станций. Зарубежные ученые также описывали работы космических полей, например, Г. Оберт. Человеком, который развил концепцию использования орбиты для связи, является Артур Кларк. Он в 1945 году поместил статью в журнале «Wireless World», где описал преимущества работы геостационарного поля. За активный труд в данной области в честь ученого орбита получила свое второе название - «пояс Кларка». Над проблемой осуществления качественной связи думали многие теоретики. Так, Герман Поточник в 1928 году высказал мысль о том, как можно применять геостационарные спутники.

Характеристика «пояса Кларка»

Чтобы орбита была названа геостационарной, она должна отвечать ряду параметров:

1. Геосинхронность. К такой характеристике относится поле, которое имеет период, соответствующий периоду обращения Земли. Геосинхронный спутник заканчивает оборот вокруг планеты за сидерический день, который равен 23 часам 56 минутам и 4 секундам. То же время необходимо Земле для выполнения одного оборота в фиксированном пространстве.

2. Для поддержания спутника на определенной точке геостационарная орбита должна быть круговой, с нулевым наклонением. Эллиптическое поле приведет к смещению либо к востоку, либо к западу, так как аппарат движется в определенных точках орбиты по-разному.

3. «Точка зависания» космического механизма должна находиться на экваторе.

4. Расположение спутников на геостационарной орбите должны быть таким, чтобы небольшое количество частот, предназначенных для связи, не привело к наложению частот разных аппаратов при приеме и передаче, а также для исключения их столкновения.

5. Достаточное количество топлива для поддержания неизменного положения космического механизма.

Геостационарная орбита спутника уникальна тем, что только при сочетании ее параметров можно добиться неподвижности аппарата. Еще одной особенностью является возможность видеть Землю под углом в семнадцать градусов из расположенных на космическом поле спутников. Каждый аппарат отхватывает примерно одну третью часть поверхности орбиты, поэтому три механизма способны обеспечить охват почти всей планеты.

Искусственные спутники

Летательный аппарат вращается вокруг Земли по геоцентрическому пути. Для его вывода используют многоступенчатую ракету. Она представляет собой космический механизм, который приводит в действие реактивная сила двигателя. Для движения по орбите искусственные спутники Земли должны иметь начальную скорость, которая соответствует первой космической. Их полеты осуществляются на высоте не меньше нескольких сотен километров. Период обращения аппарата может составлять несколько лет. Искусственные спутники Земли могут запускаться с бортов других аппаратов, например, орбитальных станций и кораблей. Беспилотники имеют массу до двух десятков тонн и размер до нескольких десятков метров. Двадцать первый век ознаменовался рождением аппаратов со сверхмалым весом - до несколько килограммов.

Спутники запускались многими странами и компаниями. Первый в мире искусственный аппарат был создан в СССР и полетел в космос 4 октября 1957 года. Он носил имя «Спутник-1». В 1958 году США запустила второй аппарат - «Эксплорер-1». Первый спутник, который был выведен NASA в 1964 году, носил имя Syncom-3. Искусственные аппараты в основном невозвратные, но есть те, которые возвращаются частично или полностью. Их используют для проведения научных исследований и решения различных задач. Так, существуют военные, исследовательские, навигационные спутники и другие. Также запускаются аппараты, созданные сотрудниками университетов или радиолюбителями.

«Точка стояния»

Геостационарные спутники располагаются на высоте 35786 километров над уровнем моря. Такая высота обеспечивает период обращения, который соответствует периоду циркуляции Земли по отношению к звездам. Искусственный аппарат неподвижен, поэтому его местоположение на геостационарной орбите называется «точкой стояния». Зависание обеспечивает постоянную длительную связь, однажды сориентированная антенна всегда будет направлена на нужный спутник.

Передвижение

Спутники можно переводить с низковысотной орбиты на геостационарную с помощью геопереходных полей. Последние представляют собой эллиптический путь с точкой на низкой высоте и пиком на высоте, которая близка к геостационарному кругу. Спутник, который стал непригодным для дальнейшей работы, отправляется на орбиту захоронения, расположенную на 200-300 километров выше ГСО.

Высота геостационарной орбиты

Спутник на данном поле держится на определенном расстоянии от Земли, не приближаясь и не удаляясь. Он всегда находится над какой-либо точкой экватора. Исходя из данных особенностей следует вывод, что силы гравитации и центробежная сила уравновешивают друг друга. Высота геостационарной орбиты рассчитывается методами, в основе которых лежит классическая механика. При этом учитывается соответствие гравитационных и центробежных сил. Значение первой величины определяется с помощью закона всемирного тяготения Ньютона. Показатель центробежной силы рассчитывается путем произведения массы спутника на центростремительное ускорение. Итогом равенства гравитационной и инертной массы является заключение о том, что высота орбиты не зависит от массы спутника. Поэтому геостационарная орбита определяется только высотой, при которой центробежная сила равна по модулю и противоположна по направлению гравитационной силе, создающейся притяжением Земли на данной высоте.

Из формулы расчета центростремительного ускорения можно найти угловую скорость. Радиус геостационарной орбиты определяется также по этой формуле либо путем деления геоцентрической гравитационной постоянной на угловую скорость в квадрате. Он составляет 42164 километра. Учитывая экваториальный радиус Земли, получаем высоту, равную 35786 километрам.

Вычисления можно провести другим путем, основываясь на утверждении, что высота орбиты, представляющая собой удаление от центра Земли, с угловой скоростью спутника, совпадающей с движением вращения планеты, рождает линейную скорость, которая равна первой космической на данной высоте.

Скорость на геостационарной орбите. Длина

Данный показатель рассчитывается путем умножения угловой скорости на радиус поля. Значение скорости на орбите равно 3,07 километра в секунду, что намного меньше первой космической скорости на околоземном пути. Чтобы уменьшить показатель, необходимо увеличить радиус орбиты более чем в шесть раз. Длина рассчитывается произведением числа Пи на радиус, умноженным на два. Она составляет 264924 километра. Показатель учитывается при вычислении «точек стояния» спутников.

Влияние сил

Параметры орбиты, по которой обращается искусственный механизм, могут изменяться под действием гравитационных лунно-солнечных возмущений, неоднородности поля Земли, эллиптичности экватора. Трансформация поля выражается в таких явлениях, как:

  1. Смещение спутника от своей позиции вдоль орбиты в сторону точек стабильного равновесия, которые носят название потенциальных ям геостационарной орбиты.
  2. Угол наклона поля к экватору растет с определенной скоростью и достигает 15 градусов один раз за 26 лет и 5 месяцев.

Для удержания спутника в нужной «точке стояния» его оснащают двигательной установкой, которую включают несколько раз в 10-15 суток. Так, для восполнения роста наклонения орбиты используют коррекцию «север-юг», а для компенсации дрейфа вдоль поля - «запад-восток». Для регулирования пути спутника в течение всего срока его работы необходим большой запас топлива на борту.

Двигательные установки

Выбор приспособления определяется индивидуальными техническими особенностями спутника. Например, химический ракетный двигатель имеет вытеснительную подачу топлива и функционирует на долго хранимых высококипящих компонентах (диазотный тетроксид, несимметричный диметилгидразин). Плазменные устройства имеют существенно меньшую тягу, но за счет продолжительной работы, которая измеряется десятками минут для единичного передвижения, способны значительно снизить потребляемое количество топлива на борту. Такой тип двигательной установки используется для маневра перевода спутника в другую орбитальную позицию. Основным ограничивающим фактором срока службы аппарата является запас топлива на геостационарной орбите.

Недостатки искусственного поля

Существенным пороком во взаимодействии с геостационарными спутниками являются большие запоздания в распространении сигнала. Так, при скорости света 300 тысяч километров в секунду и высоте орбиты 35786 километров движение луча «Земля - спутник» занимает около 0,12 секунды, а «Земля - спутник - Земля» - 0,24 секунды. Учитывая задержку сигнала в аппаратуре и кабельных системах передач наземных служб общее запоздание сигнала «источник - спутник - приемник» достигает примерно 2-4 секунд. Такой показатель существенно затрудняет применение аппаратов на орбите в телефонии и делает невозможным использование спутниковой связи в системах реального времени.

Еще одним недостатком является невидимость геостационарной орбиты с высоких широт, что мешает проводимости связи и телетрансляций в районах Арктики и Антарктиды. В ситуациях, когда солнце и спутник-передатчик находятся на одной линии с приемной антенной, наблюдается уменьшение, а порой и полное отсутствие сигнала. На геостационарных орбитах за счет неподвижности спутника такое явление проявляется особенно ярко.

Эффект Допплера

Этот феномен заключается в изменении частот электромагнитных вибраций при взаимном продвижении передатчика и приемника. Явление выражается изменением расстояния во времени, а также движением искусственных аппаратов на орбите. Эффект проявляется как малоустойчивость несущей частоты колебаний спутника, которая прибавляется к аппаратурной нестабильности частоты бортового ретранслятора и земной станции, что осложняет прием сигналов. Эффект Допплера содействует изменению частоты модулирующих вибраций, что невозможно контролировать. В случае, когда на орбите используются спутники связи и непосредственного телевизионного вещания, данное явление практически устраняется, то есть не наблюдается изменений уровня сигналов в точке приема.

Отношение в мире к геостационарным полям

Космическая орбита своим рождением создала много вопросов и международно-правовых проблем. Их решением занимается ряд комитетов, в частности, Организация Объединенных Наций. Некоторые страны, расположенные на экваторе, предъявляли претензии на распространение их суверенитета на находящуюся над их территорией часть космического поля. Государства заявляли, что геостационарная орбита представляет собой физический фактор, который связан с существованием планеты и зависит от гравитационного поля Земли, поэтому сегменты поля являются продолжением территории их стран. Но такие притязания были отвергнуты, так как в мире существует принцип неприсвоения космического пространства. Все проблемы, связанные с работой орбит и спутников, разрешаются на мировом уровне.

Траектории движения искусственных космических аппаратов отличаются от орбит естественных небесных тел: дело в том, что в первом случае присутствуют так называемые «активные участки». Это те участки орбиты спутников , на которых они двигаются, включив реактивный двигатель. Таким образом, вычисление траектории движения космических аппаратов – сложная и ответственная задача, занимаются которой специалисты в области астродинамики .

Каждая спутниковая система обладает определенным статусом, зависящим от назначения спутника, его размещения, охвата обслуживаемой территории, принадлежности как самого космического аппарата, так и наземной станции, принимающей его сигналы. В зависимости от статуса, спутниковые системы бывают:

  • Международные (региональные или глобальные);
  • Национальные;
  • Ведомственные.

Кроме того, все орбиты подразделяются на геостационарные и негеостационарные (в свою очередь, делящиеся на LEO – низкоорбитальные, MEO – средневысотные и HEO – эллиптические). Рассмотрим эти классы подробнее.

Геостационарные спутниковые орбиты

Этот тип орбиты используется для размещения космических аппаратов чаще всего, ведь он обладает существенными преимуществами: возможна непрерывная круглосуточная связь, а сдвиг частоты практически отсутствует. Геостационарные спутники располагаются на высоте около 36000 км над поверхностью Земли и двигаются со скоростью ее вращения, как бы «зависая» над определенной точкой экватора, «подспутниковой точкой». Однако, на самом деле, положение такого спутника не неподвижно: он испытывает некоторый «дрейф» из-за ряда факторов, как следствие – орбита слегка смещается со временем.

Как уже отмечалось, геостационарный спутник практически не требует перерывов в работе, так как отсутствует взаимное перемещение космического аппарата и его наземной станции. Система, состоящая из трех спутников этого типа, способна обеспечить охват почти всей земной поверхности.

Вместе с тем, такие системы не лишены и определенных недостатков, главный из которых – некоторая задержка сигнала. Поэтому спутники на геостационарных орбитах применяются чаще всего для осуществления радио- и телевещания, в которых задержки в обоих направлениях 250 мс не сказываются на качестве сигнала. Существенно более ощутимыми оказываются задержки в системе радиотелефонной связи (с учетом обработки сигнала в наземных сетях, суммарное время уже примерно 600 мс). Кроме того, зона охвата подобных спутников не включает высокоширотные районы (свыше 76,50° с.ш . и ю.ш .), то есть действительно глобальный охват не гарантируется.

В связи с бурным развитием спутниковой связи, в последнее десятилетие на геостационарной орбите стало «тесно», а с размещением новых аппаратов возникают проблемы. Дело в том, что, в соответствии с международными нормами, на околоэкваториальной орбите можно разместить не более 360-ти спутников, иначе будут возникать взаимные помехи.

Средневысотные орбиты спутников

Спутниковые системы этого типа начали разрабатывать компании, занимающиеся изначально выпуском геостационарных космических аппаратов. Средневысотная орбита обеспечивает более качественные показатели связи для подвижных абонентов, так как каждый пользователь мобильной связью оказывается в поле достижения одновременно нескольких спутников; суммарная задержка – не более 130 мс.

Местоположение негеостационарного спутника ограничено так называемыми радиационными поясами Ван-Аллена, пространственными поясами заряженных частиц, которые были «захвачены» магнитным полем Земли. Первый из устойчивых поясов высокой радиации находится примерно на высоте 1500 км от поверхности планеты, его размах – несколько тысяч километров. Второй пояс – с такой же высокой интенсивностью (10 000 имп ./с), находится в пределах 13000–19000 км от Земли.

Своеобразная «трасса» для средневысотных спутников располагается между первым и вторым радиационными поясами, то есть на высоте 5000–15000 км. Эти аппараты слабее геостационарных, поэтому для полного покрытия поверхности Земли необходима орбитальная группа из 8-12 спутников (например, Spaceway NGSO, ICO, «Ростелесат »); каждый спутник находится в зоне радиовидимости наземной станции недолго, примерно 1,5-2 ч.

Низкие круговые орбиты спутников

Спутники на низких орбитах (700-1500 км) обладают некоторыми преимуществами перед другими космическими аппаратами по энергетическим характеристикам, однако, проигрывают в длительности сеансов связи, а также общем сроке службы. Период обращения спутника, в среднем, составляет 100 мин, при этом примерно 30% этого времени он пребывает на теневой стороне планеты. Аккумуляторные бортовые батареи способны испытать в год около 5000 циклов зарядки/разрядки, как результат – срок их работы не превышает 5-8 лет.

Выбор подобного диапазона высот для низкоорбитальных спутниковых систем неслучаен. На высоте менее 700 км относительно высокая плотность атмосферы, что вызывает «деградацию» орбиты – постепенное отклонение от курса, для его сохранения требуются повышенные затраты топлива. На высоте же 1500 км начинается первый пояс Ван-Аллена, в зоне радиации которого практически невозможна работа бортовой аппаратуры.

Однако в связи с низкой высотой орбиты, для охвата всей территории Земли требуется орбитальная группировка из не менее чем 48 космических аппаратов. Период вращения на этих орбитах – 90 мин-2 ч, при этом максимальное время пребывания спутника в зоне радиовидимости – всего 10-15 мин.

Эллиптические орбиты

Эллиптические орбиты спутников Земли являются синхронными, то есть, будучи выведенными на орбиту, они вращаются со скоростью планеты, а период обращения кратен суткам. В настоящее время используется несколько типов подобных орбит: Archi-medes , Borealis , «Тундра»,«Молния».

Скорость эллиптического спутника в апогее (при достижении вершины «эллипса») ниже, чем в перигее, поэтому в этот период аппарат может находиться в зоне радиовидимости определенного региона дольше, чем спутник с круговой орбитой. Сеансы связи, к примеру, у «Молнии» длятся 8-10 ч, а система из трех спутников способна поддерживать круглосуточную глобальную связь.

Что собой представляет геостационарная орбита? Это круговое поле, которое расположилось над экватором Земли, по нему искусственный спутник обращается с угловой скоростью вращения планеты вокруг оси. Он не изменяет свое направление в горизонтальной системе координат, а неподвижно висит в небе. Геостационарная орбита Земли (ГСО)представляет собой разновидность геосинхронного поля и применяется для размещения коммуникационных, телетрансляционных и других спутников.

Идея использования искусственных аппаратов

Само понятие геостационарной орбиты инициировано русским изобретателем К. Э. Циолковским. В своих работах он предлагал заселить космос с помощью орбитальных станций. Зарубежные ученые также описывали работы космических полей, например, Г. Оберт. Человеком, который развил концепцию использования орбиты для связи, является Артур Кларк. Он в 1945 году поместил статью в журнале «Wireless World», где описал преимущества работы геостационарного поля. За активный труд в данной области в честь ученого орбита получила свое второе название - «пояс Кларка». Над проблемой осуществления качественной связи думали многие теоретики. Так, Герман Поточник в 1928 году высказал мысль о том, как можно применять геостационарные спутники.

Характеристика «пояса Кларка»

Чтобы орбита была названа геостационарной, она должна отвечать ряду параметров:

1. Геосинхронность. К такой характеристике относится поле, которое имеет период, соответствующий периоду обращения Земли. Геосинхронный спутник заканчивает оборот вокруг планеты за сидерический день, который равен 23 часам 56 минутам и 4 секундам. То же время необходимо Земле для выполнения одного оборота в фиксированном пространстве.

2. Для поддержания спутника на определенной точке геостационарная орбита должна быть круговой, с нулевым наклонением. Эллиптическое поле приведет к смещению либо к востоку, либо к западу, так как аппарат движется в определенных точках орбиты по-разному.

3. «Точка зависания» космического механизма должна находиться на экваторе.

4. Расположение спутников на геостационарной орбите должны быть таким, чтобы небольшое количество частот, предназначенных для связи, не привело к наложению частот разных аппаратов при приеме и передаче, а также для исключения их столкновения.

5. Достаточное количество топлива для поддержания неизменного положения космического механизма.

Геостационарная орбита спутника уникальна тем, что только при сочетании ее параметров можно добиться неподвижности аппарата. Еще одной особенностью является возможность видеть Землю под углом в семнадцать градусов из расположенных на космическом поле спутников. Каждый аппарат отхватывает примерно одну третью часть поверхности орбиты, поэтому три механизма способны обеспечить охват почти всей планеты.

Искусственные спутники

Летательный аппарат вращается вокруг Земли по геоцентрическому пути. Для его вывода используют многоступенчатую ракету. Она представляет собой космический механизм, который приводит в действие реактивная сила двигателя. Для движения по орбите искусственные спутники Земли должны иметь начальную скорость, которая соответствует первой космической. Их полеты осуществляются на высоте не меньше нескольких сотен километров. Период обращения аппарата может составлять несколько лет. Искусственные спутники Земли могут запускаться с бортов других аппаратов, например, орбитальных станций и кораблей. Беспилотники имеют массу до двух десятков тонн и размер до нескольких десятков метров. Двадцать первый век ознаменовался рождением аппаратов со сверхмалым весом - до несколько килограммов.

Спутники запускались многими странами и компаниями. Первый в мире искусственный аппарат был создан в СССР и полетел в космос 4 октября 1957 года. Он носил имя «Спутник-1». В 1958 году США запустила второй аппарат - «Эксплорер-1». Первый спутник, который был выведен NASA в 1964 году, носил имя Syncom-3. Искусственные аппараты в основном невозвратные, но есть те, которые возвращаются частично или полностью. Их используют для проведения научных исследований и решения различных задач. Так, существуют военные, исследовательские, навигационные спутники и другие. Также запускаются аппараты, созданные сотрудниками университетов или радиолюбителями.

«Точка стояния»

Геостационарные спутники располагаются на высоте 35786 километров над уровнем моря. Такая высота обеспечивает период обращения, который соответствует периоду циркуляции Земли по отношению к звездам. Искусственный аппарат неподвижен, поэтому его местоположение на геостационарной орбите называется «точкой стояния». Зависание обеспечивает постоянную длительную связь, однажды сориентированная антенна всегда будет направлена на нужный спутник.

Передвижение

Спутники можно переводить с низковысотной орбиты на геостационарную с помощью геопереходных полей. Последние представляют собой эллиптический путь с точкой на низкой высоте и пиком на высоте, которая близка к геостационарному кругу. Спутник, который стал непригодным для дальнейшей работы, отправляется на орбиту захоронения, расположенную на 200-300 километров выше ГСО.

Высота геостационарной орбиты

Спутник на данном поле держится на определенном расстоянии от Земли, не приближаясь и не удаляясь. Он всегда находится над какой-либо точкой экватора. Исходя из данных особенностей следует вывод, что силы гравитации и центробежная сила уравновешивают друг друга. Высота геостационарной орбиты рассчитывается методами, в основе которых лежит классическая механика. При этом учитывается соответствие гравитационных и центробежных сил. Значение первой величины определяется с помощью закона всемирного тяготения Ньютона. Показатель центробежной силы рассчитывается путем произведения массы спутника на центростремительное ускорение. Итогом равенства гравитационной и инертной массы является заключение о том, что высота орбиты не зависит от массы спутника. Поэтому геостационарная орбита определяется только высотой, при которой центробежная сила равна по модулю и противоположна по направлению гравитационной силе, создающейся притяжением Земли на данной высоте.

Из формулы расчета центростремительного ускорения можно найти угловую скорость. Радиус геостационарной орбиты определяется также по этой формуле либо путем деления геоцентрической гравитационной постоянной на угловую скорость в квадрате. Он составляет 42164 километра. Учитывая экваториальный радиус Земли, получаем высоту, равную 35786 километрам.

Вычисления можно провести другим путем, основываясь на утверждении, что высота орбиты, представляющая собой удаление от центра Земли, с угловой скоростью спутника, совпадающей с движением вращения планеты, рождает линейную скорость, которая равна первой космической на данной высоте.

Скорость на геостационарной орбите. Длина

Данный показатель рассчитывается путем умножения угловой скорости на радиус поля. Значение скорости на орбите равно 3,07 километра в секунду, что намного меньше первой космической скорости на околоземном пути. Чтобы уменьшить показатель, необходимо увеличить радиус орбиты более чем в шесть раз. Длина рассчитывается произведением числа Пи на радиус, умноженным на два. Она составляет 264924 километра. Показатель учитывается при вычислении «точек стояния» спутников.

Влияние сил

Параметры орбиты, по которой обращается искусственный механизм, могут изменяться под действием гравитационных лунно-солнечных возмущений, неоднородности поля Земли, эллиптичности экватора. Трансформация поля выражается в таких явлениях, как:

  1. Смещение спутника от своей позиции вдоль орбиты в сторону точек стабильного равновесия, которые носят название потенциальных ям геостационарной орбиты.
  2. Угол наклона поля к экватору растет с определенной скоростью и достигает 15 градусов один раз за 26 лет и 5 месяцев.

Для удержания спутника в нужной «точке стояния» его оснащают двигательной установкой, которую включают несколько раз в 10-15 суток. Так, для восполнения роста наклонения орбиты используют коррекцию «север-юг», а для компенсации дрейфа вдоль поля - «запад-восток». Для регулирования пути спутника в течение всего срока его работы необходим большой запас топлива на борту.

Двигательные установки

Выбор приспособления определяется индивидуальными техническими особенностями спутника. Например, химический ракетный двигатель имеет вытеснительную подачу топлива и функционирует на долго хранимых высококипящих компонентах (диазотный тетроксид, несимметричный диметилгидразин). Плазменные устройства имеют существенно меньшую тягу, но за счет продолжительной работы, которая измеряется десятками минут для единичного передвижения, способны значительно снизить потребляемое количество топлива на борту. Такой тип двигательной установки используется для маневра перевода спутника в другую орбитальную позицию. Основным ограничивающим фактором срока службы аппарата является запас топлива на геостационарной орбите.

Недостатки искусственного поля

Существенным пороком во взаимодействии с геостационарными спутниками являются большие запоздания в распространении сигнала. Так, при скорости света 300 тысяч километров в секунду и высоте орбиты 35786 километров движение луча «Земля - спутник» занимает около 0,12 секунды, а «Земля - спутник - Земля» - 0,24 секунды. Учитывая задержку сигнала в аппаратуре и кабельных системах передач наземных служб общее запоздание сигнала «источник - спутник - приемник» достигает примерно 2-4 секунд. Такой показатель существенно затрудняет применение аппаратов на орбите в телефонии и делает невозможным использование спутниковой связи в системах реального времени.

Еще одним недостатком является невидимость геостационарной орбиты с высоких широт, что мешает проводимости связи и телетрансляций в районах Арктики и Антарктиды. В ситуациях, когда солнце и спутник-передатчик находятся на одной линии с приемной антенной, наблюдается уменьшение, а порой и полное отсутствие сигнала. На геостационарных орбитах за счет неподвижности спутника такое явление проявляется особенно ярко.

Эффект Допплера

Этот феномен заключается в изменении частот электромагнитных вибраций при взаимном продвижении передатчика и приемника. Явление выражается изменением расстояния во времени, а также движением искусственных аппаратов на орбите. Эффект проявляется как малоустойчивость несущей частоты колебаний спутника, которая прибавляется к аппаратурной нестабильности частоты бортового ретранслятора и земной станции, что осложняет прием сигналов. Эффект Допплера содействует изменению частоты модулирующих вибраций, что невозможно контролировать. В случае, когда на орбите используются спутники связи и непосредственного телевизионного вещания, данное явление практически устраняется, то есть не наблюдается изменений уровня сигналов в точке приема.

Отношение в мире к геостационарным полям

Космическая орбита своим рождением создала много вопросов и международно-правовых проблем. Их решением занимается ряд комитетов, в частности, Организация Объединенных Наций. Некоторые страны, расположенные на экваторе, предъявляли претензии на распространение их суверенитета на находящуюся над их территорией часть космического поля. Государства заявляли, что геостационарная орбита представляет собой физический фактор, который связан с существованием планеты и зависит от гравитационного поля Земли, поэтому сегменты поля являются продолжением территории их стран. Но такие притязания были отвергнуты, так как в мире существует принцип неприсвоения космического пространства. Все проблемы, связанные с работой орбит и спутников, разрешаются на мировом уровне.