Программы

Типы интерфейсов передачи данных. Обзор основных интерфейсов передачи данных

ИНТЕРФЕЙС (interface). Совокупность правил взаимодействия устройств и программ между собой или с пользователем и средств, реализующих это взаимодействие. Понятие интерфейса включает в себя как сами аппаратные и программные средства, связывающие различные устройства или программы между собой или с пользователем, так и правила и алгоритмы, на основе которых эти средства созданы. Например, интерфейс устройств - это и линии связи между ними, и устройства сопряжения, и способ преобразования передаваемых от устройства к устройству сигналов и данных, и физические характеристики канала связи. Программный интерфейс - это и программы, обслуживающие передачу данных от одной задачи к другой, и типы данных, и список общих переменных и областей памяти, и набор допустимых процедур или операций и их параметров. Интерфейс пользователя с программой - это и изображенные на экране терминала кнопки, меню и другие элементы управления, с помощью которых пользователь управляет решением задачи, и сам терминал и предусмотренные в программе операторы, позволяющие такое управление осуществить.

Пользовательский интерфейс - в данной главе это значит общение между человеком и компьютером.

Во многих определениях, интерфейс отождествляется с диалогом, который подобен диалогу или взаимодействию между двумя людьми. И точно как наука и культура нуждается в правилах общения людей и взаимодействия их друг с другом в диалоге, также и человеко-машинный диалог также нуждается в правилах.

Общий Пользовательский Доступ - это правила, которые объясняют диалог в терминах общих элементов, таких как правила представления информации на экране, и правила интерактивной технологии такие, как правила реагирования человека-оператора на то, что представлено на экране.

КОМПОНЕНТЫ ИНТЕРФЕЙСА

На практическом уровне, интерфейс это набор стандартных приемов взаимодействия с техникой. На теоретическом уровне интерфейс имеет три основных компоненты:

· Способ общения машины с человеком-оператором.

· Способ общения человека-оператора с машиной.

· Способ пользовательского представления интерфейса.

МАШИНА К ПОЛЬЗОВАТЕЛЮ

Способ общения машины с пользователем (язык представления) определяется машинным приложением (прикладной программной системой). Приложение управляет доступом к информации, обработкой информации, представлением информации в виде понятном для пользователя.

ПОЛЬЗОВАТЕЛЬ К МАШИНЕ

Пользователь должен распознать информацию, которую представляет компьютер, понять (проанализировать) ее, и переходить к ответу. Ответ реализуется через интерактивную технологию, элементами которой могут быть такие действия как выбор объекта при помощи клавиши или мыши. Все это составляет вторую часть интерфейса, а именно язык действий.

КАК ПОЛЬЗОВАТЕЛЬ ДУМАЕТ

Эту часть интерфейса составляет комплекс представлений пользователя о приложении в целом, что называется пользовательской концептуальной моделью .

Пользователи могут иметь представление о машинном интерфейсе, что он делает и как им работать. Некоторые из этих представлений формируются у пользователей в результате опыта работы другими машинами, такими как печатающее устройство, калькулятор, видеоигры, а также компьютерная система. Хороший пользовательский интерфейс использует этот опыт. Более развитые представления формируются от опыта работы пользователей с самим интерфейсом. Интерфейс помогает пользователям развивать представления, которые могут в дальнейшем использоваться при работе с другими прикладными интерфейсами.

Разработка пользовательского интерфейса: что это значит?
Дизайн сайта, расположение функциональных блоков, содержание и расположение контента производится таким образом, что пользователь подталкивается к совершению необходимого действия: звонок, написание комментария, совершение покупки, заказ товара и т.д. Стоит понимать, что поведение пользователей никак не корректируется и не изменяется. Трансформации подвергается сам сайт.
Пользовательский интерфейс – порядок расположения функциональных блоков сайта, способствующий совершению определенных действий пользователем. Это может быть звонок, покупка товара, написание отзыва. Такой же результат может обеспечить и оценка юзабилити. Но путать эти понятия не стоит: от пользовательского интерфейса юзабилити отличается тем, что это метод, позволяющий оценить удобство пользования сайтом и успех выполнения пользователем задач. В то время как проектирование интерфейсов – полностью готовый прототип сайта. Проектирование подразумевает использование результатов юзабилити. Без данных, полученных при применении этой методики, ничего не получится.

Лекция 4 Типы интерфейсов данных

Лекция 4

Тема: Типы интерфейсов данных

Данные в сетях передаются в виде пакетов или ячеек. Сначала использовалась передача пакетов, которая до сих пор остается наиболее распространенным методом передачи данных в локальных сетях. Передача ячеек (пакетов фиксированной длины) позволяет строить высокоскоростные каналы между локальными и глобальными сетями. Для каждого метода передачи необходимы специальные интерфейсы, управляющие сетевыми коммуникациями на физическом уровне. В следующих разделах описываются и сравниваются используемые в сетях пакеты и ячейки, а также предназначение для них интерфейсы.

Передача пакетов

Данные передаются от узла к узлу в виде больших фрагментов, называемых пакетами или фреймами. Коммуникационное программное обеспечение каждого узла разбивает данные на такие фрагменты. В зависимости от передающей среды, фрагмент данных преобразуется в электрический, радио- или световой сигнал, который и может быть передан между узлами. Требуется много пакетов данных, чтобы передать страницу текста или файл.

Формат пакетов определяется используемым в сети протоколом. Например, протокол определяет способ указания адреса узла, посылающего пакет, адреса принимающего узла, типа передаваемых данных, размера пакета, объёма передаваемых данных и метода обнаружения поврежденных пакетов или коммуникационных ошибок. Другой важной частью пакета является синхронизирующая информация для передачи множества пакетов, позволяющая отсылать пакеты через заданные интервалы времени. На рис.1 показан общий формат пакета.

Для физической передачи пакетов в сеть служит карта сетевого интерфейса, или сетевой адаптер (networkinterface card, NIC). Сетевой адаптер позволяет подключить рабочую станцию, файл-сервер, принтер или другое устройство к сетевой передающей среде, например, к коаксиальному кабелю или витой паре. На одном конце адаптера располагается разъем (или коннектор), соответствующий типу сетевой среды.

Сетевой адаптер является приемопередатчиком, обеспечивающим канал передачи данных в сетевой среде. Его встроенные средства упаковывают во фрейм заголовок, исходный и целевой адреса, данные и хвостовик, а фрейм в виде законченного пакета передается в коммуникационную среду. Сетевой адаптер имеет алгоритмы для приема, распаковки, передачи и синхронизации данных, а также для управления конфликтами и ошибками. Программные алгоритмы, реализующие эти функции, хранятся в исполняемых и служебных файлах, называемых сетевыми драйверами. Для каждого сетевого адаптера необходимы определенные сетевые драйверы, соответствующие методу доступа к сети, формату инкапсуляции данных, типу кабельной системы и физической (MAC) адресации. В программных драйверах реализуются стандарты многоуровневых сетевых коммуникаций, заданные эталонной моделью OSI. Драйверы позволяют сетевому адаптеру выполнять передачу данных на Физическом (Уровень 1) и Канальном (Уровень 2) уровнях.

Передача ячеек

Обычно ячейка (cell) содержит фрагмент данных фиксированной длины в формате, пригодном для передачи с большими скоростями - от 155 Мбит/с до 1 Гбит/с и выше. Как показано на рис. 2 ячейка имеет заголовок(header), в котором содержится следующая информация:

Данные для управления потоком, координирующие передачу информации между исходным и целевым узлами;

Информация о маршруте и канале, позволяющая передавать данные по кратчайшему маршруту;

Признак, указывающий на то, содержит ли ячейка реальные данные или управляющую информацию для осуществления высокоскоростного соединения;

Сведения об ошибках.

Имеющая фиксированную длину полезная нагрузка ячейки отличается реальных данных, содержащихся в пакете. В зависимости от протокола, Л кеты содержат данные переменной длины, которая кратна байту (8 битам) Например, данные в пакете распространенного стандарта Ethernet может иметь длину от нескольких сот до нескольких тысяч бит.

При асинхронном режиме передачи (asynchronous transfer mode, ATM) данные в ячейке всегда имеют длину 384 бита. Технология ATM (подробно описываемая в главе 8) представляет собой метод передачи данных, в котором ячейки и множество каналов используются для пересылки речевых сигналов, видео и данных в локальных и глобальных сетях. Фиксированная длина позволяет более точно синхронизировать передачу данных и обеспечить высокие скорости коммуникаций и качество обслуживания (Quality of Serve QoS). Качество обслуживания количественно описывает качество передачи данных, пропускную способность и надежность сетевой системы. Некоторые производители и телекоммуникационные компании предлагают для своих систем или оборудования гарантированное качество обслуживания.

В первую очередь ячейки используются в сетях ATM, поэтому интерфейсы данных состоят из коммутаторовATM, интерфейсов подключаемых устройств (AUI) и оптоволоконного кабеля. В составAUI-интерфейса входят приемопередатчик и сетевые драйверы, построенные по тем же принципам, что и драйверы для сетевых адаптеров, однако ориентированные на соединения по коаксиальному кабелю, витой паре или оптоволокну.

Согласно спецификациям ATM Forum и TIA Fiber Division, LAN Section, для передачи ячеек в магистралях локальных сетей, работающих на скорости 622 Мбит/с и на расстояниях до 500 м, требуется одномодовый оптоволоконный кабель. Многомодовый кабель с полосой пропускания 500 МГц на 1 км является наиболее выгодным решением для резервных магистралей, обеспечивающих скорость до 100 Мбит/с на расстоянии до2000 м. Следовательно, наилучшая конструкция кабельной системы, удовлетворяющаяся современным и будущим требованиям к резервным магистралям, представляет собой комбинацию многомодовых (62,5/125FDDI Grade) и одномодомовых оптических кабелей. Такие решения можно рассматривать как пример комбинированной кабельной системы.

Обычно кабельная магистраль содержит от 18 до 48 многомодовых оптических кабелей. При добавлении от 6 до 12 одномодовых кабелей (имеющих чрезвычайно высокие показатели полосы пропускания) можно обеспечить совместимость с будущими высокоскоростными приложениями. Свободные (или темные) оптические кабели можно оставить не разведенными до тех пор, пока в них не появится необходимость. В большинстве проектов затраты на установку избыточных кабелей невелики по сравннию с общими расходами на монтаж и намного меньше, чем затраты на установку дополнительных кабелей в будущем.

Интерфейсы – это устройство, позволяющее производить обмен данными между источником и приемником.

Параллельный интерфейс .

Представляет собой n – разрядную шину, по которой параллельно вводятся или выводятся данные по линиям связей, каждая из которых имеет свой вес. По n-разрядной шине производится обмен данными между источником и приемником.

Допустим данные вводятся в ВУ из АЦП, тогда АЦП – источник, ВУ – приемник. Сигнал CS выбирается при совпадении адреса на ША установленного процесса и адреса присвоенного порту или устройству с которым происходит обмен данными. Устройства, адреса которых не совпадают с адресом устройств на ША, находятся в нейтральном состоянии («отдыхают»). Данные устанавливаются на ШД одновременно.

Данные маркируются по разрядам. В каждый разряд можно записать либо 0, либо 1. Номер разряда соответствует его весу. При объединении 4-х разрядов в 1-н знак, получим младший и старший разряд. Для того, что бы записать в разряд число, нужно сложить значение старшего и младшего разряда.

К параллельному интерфейсу относятся: внутренние шины (адресов, данных), интерфейс для принтера, для подключения внешних устройств, таких как ISA, PCI, AGP, LPT.

Достоинство: высокая скорость передачи информации.

Недостаток: Ограниченная длина линии связи, подверженность воздействию внешних помех, скорость передачи информации ограничена внутренней шиной.

Параллельные интерфейсы используются для обмена данными внутри ПК и внешним устройством, находящихся на небольшом расстоянии (LPT ~ 3м).

Если скорость обмена данными между процессором и внешним устройством не соответствует скорости, на которой работает процессор, используют буферезацию.

Буфер – это память, которая может обмениваться данными на скорости, соответствующей скорости внешнего устройства (заполнение буфера) и впоследствии обмениваться данными между буфером и процессором на скорости процессора.

Пример буферов: КЭШ память, буферная память в составе устройств ввода/вывода данных (платы с АЦП, видеокарты).

Последовательный интерфейс .

Данные передаются последовательно по одному проводу. К последовательным интерфейсам относятся: COM- порт, USB, PC/2 (мышка, клавиатура). Можно связывать между собой только два устройства.



Последовательные синхронные интерфейсы (ПСИ) – для передачи данных используются кроме линии данных линии тактовых импульсов (сигналов).

Чтение запись данных производится по фронту тактового импульса (-импульса синхронизации обмена данными).

Если к линии данных подключено более одного устройства, то выбор устройства, с которым производится обмен данными осуществляется специальным сигналом CS.

К этим интерфейсам относится: SPI, I 2 C

Эти интерфейсы применяются для обмена данными внутри ВУ, содержащих в своем составе микроконтроллер и некоторую периферию (АЦП, ЦАП, датчик температур) внутри прибора.

Последовательный асинхронный интерфейс (ПАН)

В составе ПАН нет сигналов синхронизации (нет CLK (тактовых сигналов)). Обмен данными осуществляется последовательной установкой на линию данных битов данных на равные интервалы времени.

Последовательные асинхронные полудуплексные интерфейсы

RxD – приемник,

TxD – передатчик.

Через равные интервалы времени передается состояние одного и того же разряда. В данном типе интерфейсов при передаче данных могут участвовать только 2 устройства (приемник и пердатчик).

1– стартовый импульс (синхронизирует процесс передачи);

2– передается байт данных (количество передаваемых бит 5-8);

3 – передается служебная информация (бит проверки на четность);

4– стоповые биты (минимум 2) – разделительные биты между последовательно передаваемыми посылками.

3+4 – служебные биты

Бит проверки на четность применяют для исключения случайных ошибок (значение бита равно 1 или 0 в информативном такте, значение устанавливается таким, чтобы общее число единиц было четным).

Если в байте три единицы, то бит четности = 1, если 6, то бит четности =0.

Стоповые биты определяют минимальный интервал времени между соседними посылками. Их может быть 1 или 2 в зависимости от принятого протокола обмена данными. Если посылка данных осуществляется через интервал времени больший чем интервал стоповых битов, то это не приводит к сбою передачи данных по интерфейсу, если меньше, то приводит.

Скорость передачи данных измеряется в [бод]. (1 бод = 1 бит/с).

Достоинства:

Для передачи данных требуется минимум проводов,

Хорошо работает на длинных дистанциях.

Проще сама реализация интерфейса.

Недостаток:

Т.к. данные идут последовательно, длина линии связи может составлять до сотен метров;

Скорость передачи данных меньше, чем у параллельного интерфейса (эту проблему можно решить за счет длительности тактов)

Использовался в первых телеграфных релейных линиях связи.

Последовательные асинхронные дуплексные интерфейсы

Дуплексный режим – одновременно информация передается в обе стороны. Источник и приемник имеют разные приоритеты.

Промышленный интерфейс RS-485 (Дуплексный режим)

Этот интерфейс позволяет подключать в одной ШД несколько устройств.

Master – означает что компьютер первым посылает запрос по линии связи RS-485, содержащей адрес устройства с которым будет вести обмен данными. Все устройства принимают этот запрос находясь в режиме ожидания, и то устройство адрес которого совпадает с заданным ПК номером принимает или передает данные в соответствии с установленным протоколом обмена данных.

Как правило все устройства - исполнительные механизмы.

RS-422 (Полудуплексный режим)

tком > tуп

tком – время посылки между командами

tуп – время передачи данных любого из устройств (длительность ответа n-го устройства для исключения конкуренции сигналов по линии передачи данных).

Для преобразования сигналов служат специализированные преобразователи. Устройства преобразования сигналов интерфейсов RS-422, RS-485 имеют в своем составе гальваническую развязку. Передача данных по линиям интерфейсов RS-422, RS-485 осуществляется по 2-м проводам с использованием дифференциальной линии связи для уменьшения влияния внешних проводов.

Data+ Data- Rs-485
TxD+ TxD- RxD+ RxD- RS-422

Длина линии связи может достичь до 1 км с использованием стандартного устройства преобразования.

Типы устройств ввода/вывода

1.Устройства, устанавливаемые на шину компьютера (PSI ,ISA). Имеют связь непосредственно с внутренней шиной, достаточно быстро могут вводить информацию.

2. Внешние устройства (COM – port, LPT – port, USB - port). Устройство вывода преобразует цифровой код в напряжение. Платы цифрового (дискретного) вывода информации применяются для управления оборудованием по принципу «включен/выключен».

В состав современных плат ввода - вывода сигнала может быть включен Digital Signal Processor (DSP – цифровой сигнальный процессор). Он выполняет функцию предварительной обработки вводимых сигналов.

Может осуществлять мультиплексирование подаваемых на АЦП данных; цифровую фильтрацию данных (удаление помех), частотный анализ сигнала (строится путем преобразований Фурье).

Характеристики устройств ввода/вывода

Характеристики для АЦП:

Количество разрядов;

Максимальное входное напряжение (Существует ряд стандартных максимальных напряжений: 1; 2,5; 5; 10 В);

Полярность (однополярный: U=0÷Umax, двухполярный: U=-Umax÷Umax);

Наличие мультиплексера (предназначен для переключения каналов и определения, с какого канала пойдет сигнал на АЦП)

При наличии мультиплексера появляется такой параметр, как частота преобразования канала АЦП. В паспорте АЦП указывается общая частот преобразования. Поэтому, если f p - частота преобразования, указанная в паспорте, то часта преобразования одного канала: f канала =f p /m, где m – число каналов.

Наличие гальванической развязки (применяется для разделения нулевых потенциалов работы вычислительных и внешних устройств);

Объем буферной памяти (для высокочастотных систем).

При записи происходит потеря информации, т.к. скорость записи меньше скорости считывания.

Во многих АЦП есть возможность подключения дифференциального сигнала.

Интерфейс RS-232

Один из наиболее распространенных последовательных интерфейсов. Первоначально разработан для связи терминалов с центральным компьютером, в настоящее время широко применяется для обмена данными между ПК и одиночными микроконтроллерными устройствами. Интерфейс RS-232 предназначен для соединения двух устройств (рис. 21). Передатчик одного устройства соединяется с приемником другого, и наоборот, что обеспечивает полудуплексный режим передачи данных. Для управления подключенным устройством можно использовать дополнительные линии порта RS-232 или специальные символы, добавляемые к передаваемым данным.

Скорость передачи 19 200 бит/c

Протяженность линии связи 15 м

Вид сигнала потенциальный с общим проводом

Число передатчиков 1

Число приемников 1

Интерфейс RS-422

Интерфейс разработан в 1975 г. для обмена данными между центральным компьютером и периферийным оборудованием. Интерфейс использует симметричную линию связи (рис. 22) и обеспечивает работу удаленного оборудования с ускоренным обменом данными. Интерфейс обеспечивает хорошее подавление помех общего вида за счет использования витой пары в качестве линии связи. Каждый передатчик может быть нагружен на несколько приемников (до 10), что позволяет обмениваться одновременно с несколькими устройствами.


Скорость передачи 10 Мбит/c

Протяженность линии связи 1200 м

Вид сигнала дифференциальный, витая пара

Число передатчиков 1

Число приемников 10

Организация связи полный дуплекс, точка-точка.

Интерфейс RS-485

Интерфейс широко распространен в промышленности для двунаправленного обмена данными по симметричной двухпроводной линии связи с повышенной нагрузочной способностью и протяженностью (рис. 23). Применяется для организации сетей типа «звезда» или «кольцо». Применение ретрансляторов позволяет увеличить расстояние между абонентами и организовать новый сегмент сети.

Интерфейс CAN

Последовательный интерфейс CAN специально разработан для объединения датчиков, исполнительных устройств и интеллектуальных контроллеров, управляющих каким-либо объектом в системах промышленной автоматизации. На рис. 24 приведена схема построения МПС на основе специальной магистральной шины.

Основные преимущества интерфейса: обеспечение режима обмена в реальном масштабе времени благодаря возможности инициативной передачи сообщений, высокая помехоустойчивость и протокол с коррекцией ошибок.

Очевидно, что современной робототехнике для управления роботами требуется множество различных параметров. Их передача реализуется через различные интерфейсы передачи данных характеризующиеся различными скоростями передачи данных, типом передаваемой информации и способом её передачи.

В Таблица 3.3 представлены наиболее распространённые и часто встречающиеся в робототехнике и стандарты связи.

Таблица 3.3

Как видно из таблицы среди проводных последовательных интерфейсов RS-232С самый медленный, однако в силу простоты реализации большой распространенности в мире его использование наиболее приемлимо для учебных моделей и прототипов на которых отрабатываются различные тестовые принципы и алгоритмы. Так как его поддержка реализована в 99% программных продуктов на уровне стандартных библиотек интерфейсов по разработке ПО для современных компьютеров, а возможности которые предоставляет данный протокол связи позволяют контролировать наличие ошибок в линии, что достаточно для большинства схем. Конечно не стоит забывать и о параллельном интерфейсе однако он обладает существенными недостатками: прежде всего это очень низкая скорость передачи данных которая в некоторых случаях становится узким местом в реализации схемы, необходимость в прокладке большего числа кабелей по сравнению с последовательным интерфейсом передачи данных и малой длинной линии обусловленной очень низкой помехозащищённостью. Всё это делает данный интерфейс неудобным в реализации и мало подходящим для создания связи между микроконтроллерами и управляющей схемой.

Среди беспроводных протоколов для целей управления простыми роботами наиболее подходящим является стандарт связи ZigBee в связи с малой потребляемой мощностью оборудования работающего по этому стандарту и его направленности на данный сектор задач.

Последовательный интерфейс RS-232С

Данный последовательный интерфейс синхронной и асинхронной передачи данных, определяется стандартом EIA RS-232-C (Таблица) и рекомендациями V.24 CCITT. Изначально он создавался для связи компьютера с терминалом однако в настоящее время используется в самых различных целях.

Интерфейс RS-232-C предназначен для соединения двух устройств. При чём линия передачи первого устройства соединяется с линией приема второго и наоборот, данный режим называется полнодуплексным. Для управления соединенными устройствами используется программное подтверждение хотя и возможна организация аппаратного подтверждения путем организации дополнительных линий для обеспечения функций определения статуса и управления.

Таблица 3.4

Основными преимуществами использования RS-232C являются возможность передачи на большие (по сравнению с параллельным интерфейсом) расстояния и более простая схема разводки кабеля. Данные в RS-232C передаются в последовательном коде побайтно. Каждый байт обрамляется стартовым и стоповыми битами в добавок к ним может присутствовать и бит чётности, но как правило он не используется.

Современный компьютер имеет 25-контактный (DB25P) или 9-контактный (DB9P) разъем (более распространённый и в дальнейшем будет рассматриваться и подразумеваться только он) для подключения RS-232C. Распайка контактов для (DB9P).

Таблица 3.5. Порядок обмена по интерфейсу RS-232C

Наименование

Направление

Описание

Контакт (DB9P)

Carrie Detect (Определение несущей)

Receive Data (Принимаемые данные)

Transmit Data (Передаваемые данные)

Data Terminal Ready (Готовность терминала)

System Ground (Корпус системы)

Data Set Ready (Готовность данных)

Request to Send (Запрос на отправку)

Clear to Send (Готовность приема)

Ring Indicator (Индикатор)

Назначение сигналов следующее:

FG - защитное заземление (экран).

TxD - данные, передаваемые компьютером в последовательном коде

RxD - данные, принимаемые компьютером в последовательном коде

RTS - сигнал запроса передачи. Активен во все время передачи.

CTS - сигнал сброса (очистки) для передачи. Активен во все время передачи. Говорит о готовности приемника.

DSR - готовность данных. Используется для задания режима модема.

SG - сигнальное заземление, нулевой провод.

DCD - обнаружение несущей данных (детектирование принимаемого сигнала).

DTR - готовность выходных данных.

RI - индикатор вызова. Используется при соединение с модемом и приеме им сигнала вызова по телефонной сети. В нашем случае вообще не используется.

Для связи наиболее часто используются трех- или четырехпроводная связь (для двунаправленной передачи).

Использование двухпроводной линии связи возможно только в случае передачи из компьютера во внешнее устройство, при этом используются используются сигналы SG и TxD. Все 10 сигналов интерфейса задействуются только при соединении компьютера с модемом что в данном случае не актуально.

Данные соопровождаются стартовым битом, битом четности и одним или двумя стоповыми битами их количество не принципиально. Получив стартовый бит, приемник выбирает из линии биты данных через определннные интервалы времени. Очень важно, чтобы тактовые частоты приемника и передатчика были одинаковыми, допустимое расхождение - не должно превышать 10%.

Скорость передачи по RS-232C в соответствии со стандартом может выбираться из ряда: 110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600 и 115200 бит/с. Очевидно что данная вольность в выборе скорости позволяет подобрать наиболее оптимальные условия для передачи данных.

Замечу, что данные передаются в инверсном коде т.е. логической единице соответствует низкий уровень, а логическому нулю - высокий уровень сигнала.

Обмен данными по последовательному интерфейсу осуществляется с помощью обращений по специально выделенным для этого портам COM1 (адреса 3F8h…3FFh, прерывание IRQ4), COM2 (адреса 2F8h…2FFh, прерывание IRQ3), COM3 (адреса 3F8h…3EFh, прерывание IRQ10), COM4 (адреса 2E8h…2EFh, прерывание IRQ11). Аналогичное описание присутствует и в документации к любому микроконтроллеру использующему данный интерфейс связи.

Однако возникает вопрос о достаточности скорости работы данного интерфейса при использовании протокола RS-232С с максимальной скоростью передачи составляющей 115200 бит/с. Разрешить подобный вопрос позволяет простая формула. Для расчёта по которой требуется знать скорость интерфейса, некоторые его особенности и количество байт требуемое для управления приводом (некоторым приводам требуется всего один байт, а некоторым 2 или даже 3 для управления, но этот параметр определяется особенностью самого привода)

Формула (для выяснения количества обновлений задания для привода за 1 секунду:

где i - количество обновления команд за 1 секунду, V - скорость канала,

N - количество приводов, S - количество байт требуемое для управления 1 приводом, k - служебные байты, предназначенные для активации контроллера, порядковый № привода, контрольная сумма, а 10 это количество бит передаваемых за одну посылку по протоколу RS-232С т.е. 8 бит даннных плюс один стартовый и один стоповый бит. Бит чётности не используется. Тогда для змеевидного робота Змеелок получается:

Что означает: за 1 секунду приводы могут максимально получить ~182 команды что более чем достаточно для реализации управления т.к. по расчётам минимально необходимое количество обновлений в секунду составляет 20 - 40 обновлений.

В связи со всем вышеизложенным на начальном этапе разработки змеевидного робота целесообразно направить усилия на создание многозвенного робота с проводным интерфейсом RS-232С с последующим переходом на интерфейс CAN или беспроводной ZigBee как более скоростные и современные.